Créez votre bibliothèque numérique
  • Accueil
  • Document
  • Suggestions
  • Inscription
  • Contact
  • Accueil
  • Document
  • Suggestions
  • Inscription
  • Contact

Langue du document

      French

Hello , please log in or create an account :


  • Se connecter
  • Créer un compte

Mot de passe oublié ?

product images

BO&Play Wireless Speaker

QTY: 1 $105.00
product images

Brone Candle

QTY: 1 $25.00
  • Subtotal:
  • $130.00
  • View Cart
  • Checkout
Retour /
Machine learning methods for quantitative analysis of Raman spectroscopy data

Visionneuse

Permalien :

Machine learning methods for quantitative analysis of Raman spectroscopy data

Date_TXT
2003

Auteur
Madden, Michael G., Ryder, Alan G.
Sujet
Forensic science, Narcotics, Regression, Raman, Spectroscopy, Machine Learning, Ensemble, Genetic algorithm, Neural network
Type de document
Chapitre d'un livre

Description :

The automated identification and quantification of illicit materials using Raman spectroscopy is of significant importance for law enforcement agencies. This paper explores the use of Machine Learning (ML) methods in comparison with standard statistical regression techniques for developing automated identification methods. In this work, the ML task is broken into two sub-tasks, data reduction and prediction. In well-conditioned data, the number of samples should be much larger than the number of attributes per sample, to limit the degrees of freedom in predictive models. In this spectroscopy data, the opposite is normally true. Predictive models based on such data have a high number of degrees of freedom, which increases the risk of models over-fitting to the sample data and having poor predictive power. In the work described here, an approach to data reduction based on Genetic Algorithms is described. For the prediction sub-task, the objective is to estimate the concentration of a component in a mixture, based on its Raman spectrum and the known concentrations of previously seen mixtures. Here, Neural Networks and k-Nearest Neighbours are used for prediction. Preliminary results are presented for the problem of estimating the concentration of cocaine in solid mixtures, and compared with previously published results in which statistical analysis of the same dataset was performed. Finally, this paper demonstrates how more accurate results may be achieved by using an ensemble of prediction techniques.

Bibliothèque de l'ENSSMAL

La bibliothèque de l’ENSSMAL est une bibliothèque spécialisée englobant les domaines des sciences de la mer et de l’aménagement du littoral à travers son contenu des fils conducteurs à la matière grise et son contenant par son site dominant et sa forme de bateau. Elle a pour vocation de desservir prioritairement les besoins documentaires des utilisateurs (Etudiants, Enseignants et Chercheurs) et d’assurer à l’ensemble des utilisateurs l’accès à l’information scientifique et technologique.


Coordonées

ENSSMAL, 19, Campus Universitaires, Bois des Cars Dely Brahim, 16320 Alger, Algérie

Direction de la Bibliothèque, Responsable de la Bibliothèque: Mme BESSAOU Wahiba

Tel/Fax: (+213) 21.91.77.43

© 2022 ENSSMAL